Combining Gene and Chemo Therapy using Multifunctional Polymeric Micelles
نویسنده
چکیده
Non-viral gene carriers composed of biodegradable polymers or lipids have been considered as a safer alternative for gene carriers over viral vectors. We have developed multi-functional nano-micelles for both drug and gene delivery application. Polyethyleneimine (PEI) was modified by grafting stearic acid (SA) and formulated to polymeric micelles (PEI-SA) with positive surface charge for gene and drug delivery. Our results showed that PEI-SA micelles provided high siRNA binding efficiency. In addition, siRNA delivered by PEI-SA carriers also demonstrated significantly high cellular uptake even in the presence of serum proteins. The post-transcriptional gene silencing efficiency was greatly improved by the polyplex formulated by 10k PEI-SA/siRNA. The amphiphilic structure of PEI-SA micelles provided advantages for multifunctional tasks; where the hydrophilic shell modified with cationic charges can electrostatically interact with DNA or siRNA, and the hydrophobic core can serve as payloads for hydrophobic drugs, making it a promising multifunctional vehicle for both genetic and chemotherapy application. Keywords—polyethyleneimine, gene delivery, micelles, siRNA
منابع مشابه
Multifunctional nanoassemblies of block copolymers for future cancer therapy.
Nanoassemblies from amphiphilic block copolymers are promising nanomedicine platforms for cancer diagnosis and therapy due to their relatively small size, high loading capacity of drugs, controlled drug release, in vivo stability and prolonged blood circulation. Recent clinical trials with self-assembled polymeric micelles incorporating anticancer drugs have shown improved antitumor activity an...
متن کاملMultifunctional near-infrared light-triggered biodegradable micelles for chemo- and photo-thermal combination therapy
A combination of chemo- and photo-thermal therapy (PTT) has provided a promising efficient approach for cancer therapy. To achieve the superior synergistic chemotherapeutic effect with PTT, the development of a simple theranostic nanoplatform that can provide both cancer imaging and a spatial-temporal synchronism of both therapeutic approaches are highly desired. Our previous study has demonstr...
متن کاملMultifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems.
We describe the development of multifunctional polymeric micelles with cancer-targeting capability via alpha(v)beta(3) integrins, controlled drug delivery, and efficient magnetic resonance imaging (MRI) contrast characteristics. Doxorubicin and a cluster of superparamagnetic iron oxide (SPIO) nanoparticles were loaded successfully inside the micelle core. The presence of cRGD on the micelle sur...
متن کاملDrug and gene co-delivery systems for cancer treatment.
Cancer remains a major killer and a leading cause of death in the world; thus, a growing number of new treatments have been focused on cancer therapy over the past few decades. Chemotherapy, which is thought to be a powerful strategy for cancer treatment, has been widely used in clinical therapy in recent years. However, due to the complexity of cancer, a single therapeutic approach is insuffic...
متن کاملMultifunctional polymeric micelles for delivery of drugs and siRNA
Polymeric micelles, self-assembling nano-constructs of amphiphilic copolymers with a core-shell structure have been used as versatile carriers for delivery of drugs as well as nucleic acids. They have gained immense popularity owing to a host of favorable properties including their capacity to effectively solubilize a variety of poorly soluble pharmaceutical agents, biocompatibility, longevity,...
متن کامل